Nonparametric Confidence Interval for Quantiles

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Confidence Interval Method for the Estimation of Quantiles

Confidence intervals for the median of estimators or other quantiles were proposed as a substitute for usual confidence intervals in terminating and steady-state simulation. They are easy to obtain, the variance of the estimator is not used, they are well suited for correlated simulation output data, apply to functions of estimators, and in simulation they seem to be particularly accurate. For ...

متن کامل

Constructing a Confidence Interval for Quantiles of Normal Distribution‎, ‎one and Two Population

‎In this paper‎, ‎in order to establish a confidence interval (general and shortest) for quantiles of normal distribution in the case of one population‎, ‎we present a pivotal quantity that has non-central t distribution‎. ‎In the case of two independent normal populations‎, ‎we construct a confidence interval for the difference quantiles based on the generalized pivotal quantity and introduce ...

متن کامل

Improved confidence intervals for quantiles

We derive the Edgeworth expansion for the studentized version of the kernel quantile estimator. Inverting the expansion allows us to get very accurate confidence intervals for the pth quantile under general conditions. The results are applicable in practice to improve inference for quantiles when sample sizes are moderate.

متن کامل

Nonparametric confidence interval estimators for heritability and expected selection response.

Statistical methods have not been described for comparing estimates of family-mean heritability (H) or expected selection response (R), nor have consistently valid methods been described for estimating R intervals. Nonparametric methods, e.g., delete-one jackknifing, may be used to estimate variances, intervals, and hypothesis test statistics in estimation problems where parametric methods are ...

متن کامل

Using small bias nonparametric density estimators for confidence interval estimation

Confidence intervals for densities built on the basis of standard nonparametric theory are doomed to have poor coverage rates due to bias. Studies on coverage improvement exist, but reasonably behaved interval estimators are needed. We explore the use of small bias kernel-based methods to construct confidence intervals, in particular using a geometric density estimator that seems better suited ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pakistan Journal of Statistics and Operation Research

سال: 2018

ISSN: 2220-5810,1816-2711

DOI: 10.18187/pjsor.v14i1.2071